Shaorong Liu


Our class 1000 cleanroom equipped with all instrument for glass chip fabrication

Chip devices produced in our lab

Replaceable cross-linked polyacrylamide for separation of real-world sample

Shaorong Liu

BS, 1982, Huazhong Normal University
PhD, 1995, Texas Tech University
Postdoc, 1996-1997, Northeastern University;
1997-1998, University of California at Berkeley

Phone: (405)325-9013

Our research is focused primarily on microfabricated systems for bioanalysis. We are especially interested in developing and implementing new separation technologies onto microfluidic devices for DNA and protein analysis. Current active projects include: (1) Development of a hybrid chip-based and automated two dimensional electrophoresis platform for high-speed, high throughput and sensitive protein analysis. Our target is to separate more than 10,000 proteins in one run in less than two hours. (2) Nanocapillary for DNA separations in gel-free separations. With a nanocapillary we can separate DNA from a few base pairs to hundreds of thousands base pairs in a single run. It can be an improved alternative technique for Pulsed-Field Gel Electrophoresis. This project is aimed at identifying single bacterium for infectious diseases. (3) Nanomaterials: Fabrication, investigation and application of liquid behavior and mass transport in/through nanochannels. We have discovered the ion-enrichment and ion-depletion effect at micro-nanochannel interfaces. We have invented a new separation technique based on unique distributions of ions in nanoscale capillaries - the Nanochannel chromatography. We have developed a nanochannel membrane for fuel cell applications. (4) Inventing new micropumps for lab-on-chip devices. We have developed a flow battery or pressure power source that can be stacked to produce pressures of more than a thousand psi. The immediate goal is to integrate such a pressure power source, along with an injection valve and detector, on a microchip for HPLC separations.

Research keywords:
development and application of microfluidic systems; bio-separation and bio-analysis; analytical Instrumentation